- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Bach, Eviatar (3)
-
Chattopadhyay, Ashesh (1)
-
Dunbar, Oliver_R_A (1)
-
Ghil, Michael (1)
-
Gwirtz, Kyle (1)
-
Hassanzadeh, Pedram (1)
-
Hodyss, Daniel (1)
-
Kalnay, Eugenia (1)
-
Krishnamurthy, V. (1)
-
Morzfeld, Matthias (1)
-
Mote, Safa (1)
-
Nabizadeh, Ebrahim (1)
-
Sharma, A. Surjalal (1)
-
Shukla, Jagadish (1)
-
Vishny, David (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Predicting the temporal and spatial patterns of South Asian monsoon rainfall within a season is of critical importance due to its impact on agriculture, water availability, and flooding. The monsoon intraseasonal oscillation (MISO) is a robust northward-propagating mode that determines the active and break phases of the monsoon and much of the regional distribution of rainfall. However, dynamical atmospheric forecast models predict this mode poorly. Data-driven methods for MISO prediction have shown more skill, but only predict the portion of the rainfall corresponding to MISO rather than the full rainfall signal. Here, we combine state-of-the-art ensemble precipitation forecasts from a high-resolution atmospheric model with data-driven forecasts of MISO. The ensemble members of the detailed atmospheric model are projected onto a lower-dimensional subspace corresponding to the MISO dynamics and are then weighted according to their distance from the data-driven MISO forecast in this subspace. We thereby achieve improvements in rainfall forecasts over India, as well as the broader monsoon region, at 10- to 30-d lead times, an interval that is generally considered to be a predictability gap. The temporal correlation of rainfall forecasts is improved by up to 0.28 in this time range. Our results demonstrate the potential of leveraging the predictability of intraseasonal oscillations to improve extended-range forecasts; more generally, they point toward a future of combining dynamical and data-driven forecasts for Earth system prediction.more » « less
-
Chattopadhyay, Ashesh; Nabizadeh, Ebrahim; Bach, Eviatar; Hassanzadeh, Pedram (, Journal of Computational Physics)
-
Vishny, David; Morzfeld, Matthias; Gwirtz, Kyle; Bach, Eviatar; Dunbar, Oliver_R_A; Hodyss, Daniel (, Journal of Advances in Modeling Earth Systems)Abstract We synthesize knowledge from numerical weather prediction, inverse theory, and statistics to address the problem of estimating a high‐dimensional covariance matrix from a small number of samples. This problem is fundamental in statistics, machine learning/artificial intelligence, and in modern Earth science. We create several new adaptive methods for high‐dimensional covariance estimation, but one method, which we call Noise‐Informed Covariance Estimation (NICE), stands out because it has three important properties: (a) NICE is conceptually simple and computationally efficient; (b) NICE guarantees symmetric positive semi‐definite covariance estimates; and (c) NICE is largely tuning‐free. We illustrate the use of NICE on a large set of Earth science–inspired numerical examples, including cycling data assimilation, inversion of geophysical field data, and training of feed‐forward neural networks with time‐averaged data from a chaotic dynamical system. Our theory, heuristics and numerical tests suggest that NICE may indeed be a viable option for high‐dimensional covariance estimation in many Earth science problems.more » « less
An official website of the United States government
